Zpět na hledáníEstimation of stability limit based on gershgorin’s theorem for explicit contact-impact analysis signorini problem using bipenalty approach (2017)výskyt výsledku
Identifikační kód | RIV/61388998:_____/17:00483822 |
---|---|
Název v anglickém jazyce | Estimation of stability limit based on gershgorin’s theorem for explicit contact-impact analysis signorini problem using bipenalty approach |
Druh | D - Stať ve sborníku |
Jazyk | eng - angličtina |
Vědní obor | 20301 - Mechanical engineering |
Rok uplatnění | 2017 |
Kód důvěrnosti údajů | S - Úplné a pravdivé údaje o výsledku nepodléhající ochraně podle zvláštních právních předpisů. |
Počet výskytů výsledku | 3 |
Počet tvůrců celkem | 7 |
Počet domácích tvůrců | 5 |
Výčet všech uvedených jednotlivých tvůrců | Dušan Gabriel (státní příslušnost: CZ - Česká republika, domácí tvůrce: A, vedidk: 4510747, researcherid: G-7074-2014) Radek Kolman (státní příslušnost: CZ - Česká republika, domácí tvůrce: A, vedidk: 7807848, researcherid: G-7839-2014) Ján Kopačka (státní příslušnost: CZ - Česká republika, domácí tvůrce: A, vedidk: 8034451, researcherid: G-7841-2014) Michal Mračko (státní příslušnost: CZ - Česká republika, domácí tvůrce: A, vedidk: 5880620) Jiří Plešek (státní příslušnost: CZ - Česká republika, domácí tvůrce: A, vedidk: 8741883, researcherid: G-7828-2014) M. Bischoff (státní příslušnost: DE - Spolková republika Německo) A. Tkachuk (státní příslušnost: DE - Spolková republika Německo) |
Popis výsledku v anglickém jazyce | The stability properties of the bipenalty method presented in Reference [4] is studied in application to one-dimensional bipenalized Signorini problem. The attention has been paid on the critical Courant numbers estimation based on Gershgorin’s theorem. It is shown that Gershgorin’s formula overestimates maximum eigenfrequency for all penalty ratios with exception of the critical penalty ratio. Thus, smaller safer values of critical Courant numbers are obtained in comparison with exact ones calculated from the solution of eigenvalue problem.n |
Klíčová slova oddělená středníkem | contact-impact;bipenalty method;explicit time integration;Gershgorin’s theorem;Signorini problem |
Stránka www, na které se nachází výsledek | https://2017.compdyn.org/ |
DOI výsledku | - |
Odkaz na údaje z výzkumu | - |
Údaje o výsledku v závislosti na druhu výsledku
Název sborníku | COMPDYN 2017. 6th International conference on computational methods in structural dynamics and earthquake engineering. Proceedings |
---|---|
ISBN | 978-618-82844-1-8 |
ISSN | - |
e-ISSN | - |
Počet stran výsledku | 10 |
Strana od-do | 1312-1321 |
Název nakladatele | National Technical University of Athens |
Místo vydání | Athens |
Místo konání akce | Rhodes |
Datum konání akce | 15.06.2017 |
Typ akce podle státní příslušnosti účastníků | WRD - Celosvětová |
Kód UT WoS článku podle Web of Science | - |
EID výsledku v databázi Scopus | - |
Ostatní informace o výsledku
Předkladatel | Ústav termomechaniky AV ČR, v. v. i. |
---|---|
Dodavatel | GA0 - Grantová agentura České republiky (GA ČR) |
Rok sběru | 2018 |
Specifikace | RIV/61388998:_____/17:00483822!RIV18-GA0-61388998 |
Datum poslední aktualizace výsledku | 26.04.2018 |
Kontrolní číslo | 191963859 ( v1.0 ) |
Informace o dalších výskytech výsledku dodaného stejným předkladatelem
Dodáno AV ČR v roce 2018 | RIV/61388998:_____/17:00483822 v dodávce dat RIV18-AV0-61388998/01:1 |
---|---|
Dodáno MŠMT v roce 2018 | RIV/61388998:_____/17:00483822 v dodávce dat RIV18-MSM-61388998/01:1 |
Odkazy na výzkumné aktivity, při jejichž řešení výsledek vznikl
Projekt podporovaný GA ČR v programu GA | GA16-03823S - Homogenizace a víceškálové počítačové modelování proudění a nelineárních interakcí v porézních inteligentních prostředích (2016 - 2018) |
---|