Identifikační kód |
RIV/44555601:13440/19:43894754 |
Název v anglickém jazyce |
Ion microprobe improvements in Tandetron Laboratory NPI CAS: Numerical calculation |
Druh |
J - Recenzovaný odborný článek (Jimp, Jsc a Jost) |
Poddruh |
J/A - Článek v odborném periodiku je obsažen v databázi Web of Science společností Thomson Reuters s příznakem „Article“, „Review“ nebo „Letter“ (Jimp) |
Jazyk |
eng - angličtina |
Vědní obor |
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) |
Rok uplatnění |
2019 |
Kód důvěrnosti údajů |
S - Úplné a pravdivé údaje o výsledku nepodléhající ochraně podle zvláštních právních předpisů. |
Počet výskytů výsledku |
4 |
Počet tvůrců celkem |
5 |
Počet domácích tvůrců |
1 |
Výčet všech uvedených jednotlivých tvůrců |
Anna Macková (státní příslušnost: CZ - Česká republika, domácí tvůrce: A, vedidk: 5985498) V. Havránek (státní příslušnost: CZ - Česká republika) A. G. Ponomarev (státní příslušnost: UA - Ukrajina) A. Ponomarov (státní příslušnost: CN - Čínská lidová republika) O. V. Romanenko (státní příslušnost: CZ - Česká republika) |
Popis výsledku v anglickém jazyce |
Ion scanning microprobe was implemented in the Tandetron Laboratory, Nuclear Physics Institute of the Czech Academy of Sciences (NPI CAS) in Rez in 2009. Since then it has been involved in numerous experiments for investigation and modification of the materials where PIXE, PIGE, RBS and STIM are the main analytical methods. Rez microprobe is coupled with a tandetron accelerator, which provides ions from hydrogen to gold, and able to focus heavy ions with the maximum mass energy product at the level 11 MeV amu/q2. Therefore, microprobe can be used for polymers irradiation by protons and helium as well as for irradiation of various types of glass and other materials with heavy ions. The number of applications for the microprobe in the Tandetron Laboratory is constantly increasing; that leads to the necessity to raise the efficiency of the microprobe operation. Increasing the beam current density allows for a reduction in the time per experiment in relation to recording the number of events. The present work is an attempt to improve the parameters of existing ion scanning microprobe based on a compact Oxford triplet lens system. Since the microprobe is used to investigate both thin and thick targets, the position of the detectors that can restrict the microprobe construction were taken into account in the calculation. The collimated acceptance of the probe-forming system was selected as an objective function as it takes into account both chromatic and all spherical aberrations. Two methods for improving the microprobe parameters were considered. The first one is based on separation of the first lens in the system, whilst the second - on decreasing the working distance. Both ways need changing in the microprobe construction, but the last one requires a major alteration in a target chamber. The benefits of each way were studied. Obtained parameters of the new probe-forming system have shown a two fold increase of the current density of the given probe size for Rez microprobe in comparison with the present system. The benefits of the displacement of the first lens disappear with the decreasing of the working distance. |
Klíčová slova oddělená středníkem |
Spatial resolution;Spaced triplet;Nuclear microprobe;Acceptance |
Stránka www, na které se nachází výsledek |
https://www.sciencedirect.com/science/article/pii/S0168583X19305580?via%3Dihub |
DOI výsledku |
https://doi.org/10.1016/j.nimb.2019.08.007 |
Odkaz na údaje z výzkumu |
- |